Exercise 46

(a) Find the asymptotes of the graph of $f(x)=\frac{4-x}{3+x}$ and use them to sketch the graph.
(b) Use your graph from part (a) to sketch the graph of f^{\prime}
(c) Use the definition of a derivative to find $f^{\prime}(x)$
(d) Use a graphing device to graph f^{\prime} and compare with your sketch in part (b).

Solution

Part (a)

To determine the vertical asymptote(s), set what's in the denominator equal to zero and solve for x.

$$
\begin{gathered}
3+x=0 \\
x=-3
\end{gathered}
$$

To determine the horizontal asymptote(s), evaluate the limit of $f(x)$ as $x \rightarrow \pm \infty$ and set the result(s) equal to y.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{4-x}{3+x} \\
& =\lim _{x \rightarrow \infty} \frac{4-x}{3+x} \times \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{4}{x}-1}{\frac{3}{x}+1} \\
& =\frac{0-1}{0+1} \\
& =-1
\end{aligned}
$$

One horizontal asymptote is therefore $y=-1$.

In the limit as $x \rightarrow-\infty$, make the substitution $u=-x$ so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{4-x}{3+x} \\
& =\lim _{u \rightarrow \infty} \frac{4-(-u)}{3+(-u)} \\
& =\lim _{u \rightarrow \infty} \frac{4+u}{3-u} \\
& =\lim _{u \rightarrow \infty} \frac{4+u}{3-u} \times \frac{\frac{1}{u}}{\frac{1}{u}} \\
& =\lim _{u \rightarrow \infty} \frac{\frac{4}{u}+1}{\frac{3}{u}-1} \\
& =\frac{0+1}{0-1} \\
& =-1
\end{aligned}
$$

$y=-1$ is the only horizontal asymptote. Below is a graph of $f(x)$ together with its asymptotes.

Part (b)

Below is a graph of $f(x)$ and $f^{\prime}(x)$ versus x.

Part (c)
Use the definition of a derivative to calculate $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{4-(x+h)}{3+(x+h)}-\frac{4-x}{3+x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{4-x-h}{3+x+h}-\frac{4-x}{3+x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(3+x)(4-x-h)}{(3+x)(3+x+h)}-\frac{(4-x)(3+x+h)}{(3+x)(3+x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(3+x)(4-x-h)-(4-x)(3+x+h)}{(3+x)(3+x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(3+x)(4-x-h)-(4-x)(3+x+h)}{h(3+x)(3+x+h)} \\
& =\lim _{h \rightarrow 0} \frac{\left(12-3 h+x-x^{2}-x h\right)-\left(12+x+4 h-x^{2}-x h\right)}{h(3+x)(3+x+h)}
\end{aligned}
$$

Simplify the numerator, cancel h, and evaluate the limit.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{-7 h}{h(3+x)(3+x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-7}{(3+x)(3+x+h)} \\
& =\frac{-7}{(3+x)(3+x)} \\
& =-\frac{7}{(3+x)^{2}}
\end{aligned}
$$

Part (d)

Below is a graph of $f^{\prime}(x)$ versus x.

